HSP70 inhibits high glucose-induced Smad3 activation and attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells.

نویسندگان

  • Jun Liu
  • Jinfang Bao
  • Jing Hao
  • Yan Peng
  • Fuyuan Hong
چکیده

Heat shock proteins (HSPs) are molecular chaperones that were initially identified as proteins expressed following exposure of cells to environmental stress. However, the function of HSPs in epithelial‑to‑mesenchymal transition (EMT) of peritoneal mesothelial cells remains unknown. In the present study, the regulation of HSPs and their function in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), and the surrounding glucose concentrations and the molecular mechanism involved were investigated. This study explored the effect of HSP70 on high glucose (HG)-induced EMT by overexpression and small interfering RNA (siRNA) knockdown of HSP70, as well as the underlying molecular mechanisms. It was found that HSP70 inhibits HG-induced EMT by modulating Smad expression and activation. HSP70 overexpression inhibited phosphorylation and nuclear translocation of p-Smad3 and p-Smad4, while siRNA of HSP70 enhanced HG‑induced Smad3 and Smad4 phosphorylation and EMT. Furthermore, HSP70 suppressed EMT by inhibiting the generation of reactive oxygen species (ROS) induced by HG. In conclusion, HSP70 inhibits EMT of peritoneal mesothelial cells primarily by exerting domain‑specific effects on Smad3 and Smad4 activation and reducing the release of ROS. HSP70 may be a novel therapeutic target for peritoneal dialysis patients with peritoneal fibrosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Crosstalk between the Smad and JNK Signaling in the TGF-β-Induced Epithelial-Mesenchymal Transition in Rat Peritoneal Mesothelial Cells

Transforming growth factor β (TGF-β) induces the process of epithelial-mesenchymal transition (EMT) through the Smad and JNK signaling. However, it is unclear how these pathways interact in the TGF-β1-induced EMT in rat peritoneal mesothelial cells (RPMCs). Here, we show that inhibition of JNK activation by introducing the dominant-negative JNK1 gene attenuates the TGF-β1-down-regulated E-cadhe...

متن کامل

Mechanisms of Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells During Peritoneal Dialysis

A growing body of evidence indicates that epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMC) may play an important role in the development and progression of peritoneal fibrosis during long-term peritoneal dialysis (PD) leading to failure of peritoneal membrane function. Here, we review our own observations and those of others on the mechanisms of EMT of HPMC a...

متن کامل

HL 156 A , a novel AMP - activated protein kinase activator , is protective 3 against peritoneal fibrosis in an in - vivo and in - vitro model of peritoneal 4 fibrosis 5 6

45 HL156A is a novel adenosine5’-monophosphate-activated protein kinase (AMPK) activator. We 46 aimed to investigate the protective mechanism of HL156A against peritoneal fibrosis (PF) in in47 vivo and in-vitro models. Rat PF model was induced by daily intraperitoneally injection of 48 chlorhexidine (CHX) solution containing 0.1% CHX gluconate and 15% ethanol for 4 weeks. The 49 rats of treatme...

متن کامل

Inhibition of EGF Receptor Blocks the Development and Progression of Peritoneal Fibrosis.

Inhibitors of EGF receptor (EGFR) have antifibrotic effects in several organs, but the effect of these inhibitors on the development of peritoneal fibrosis is unknown. Here, we explored the therapeutic effect of gefitinib, a specific inhibitor of EGFR, on the development and progression of peritoneal fibrosis in a rat model. Daily intraperitoneal injections of chlorhexidine gluconate induced pe...

متن کامل

Scavenging of reactive oxygen species by astaxanthin inhibits epithelial–mesenchymal transition in high glucose-stimulated mesothelial cells

BACKGROUND High glucose concentrations influence the functional and structural development of the peritoneal membrane. We previously reported that the oral administration of astaxanthin (AST) suppressed peritoneal fibrosis (PF) as well as inhibited oxidative stress, inflammation, and epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) in a chlorhexidine-induced PF rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular medicine reports

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 2014